УДК:669.295.04

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТИТАНОВЫХ СПЛАВОВ ВТ6 И ВТ3-1

к. т. н. И. А. Маркова, к. т. н. Т. И. Ивченко

Днепропетровский национальный университет имени Олеся Гончара

Титан и его сплавы находят все более широкое применение в Украине и за ее пределами в самых различных отраслях промышленности благодаря уникальному сочетанию физико-химических и механических характеристик: от имплантатов и инструментов в медицине до крупногабаритных изделий авиа-, ракето-, судостроения, а также в химической, пищевой и других отраслях промышленности.

Для титановых сплавов характерна многокомпонентность с различными набором компонентов, их концентрацией и растворимостью в α - и β -фазах. Влияние каждого из основных компонентов на механические свойства титана в двойных системах исследовано достаточно хорошо, обзор этих результатов приведен в [1; 2]. Совместное влияние легирующих элементов в промышленных сплавах практически не изучалось.

Анализировали влияние изменения концентрации легирующих элементов и примесей на механические свойства широко применяемых титановых сплавов ВТ6 и ВТ3-1. Сплав ВТ6 относится к псевдо α -сплавам; содержит α -стабилизаторы Al и O (как примесь), изоморфный β -стабилизатор V, в качестве примесей эвтектоидообразующие β -стабилизаторы Fe и Si. Сплав ВТ3-1 является двухфазным и легирован алюминием, изоморфным β -стабилизатором молибденом и эвтектоидообразующими β -стабилизаторами хромом, железом, кремнием.

Задача данной работы состояла в исследовании влияния изменения концентрации компонентов на механические характеристики сплавов BT6 и BT3-1.

На машиностроительных заводах были отобраны статистические данные по химическому составу и механическим свойствам промышленных прутков из сплава BT6 и штамповок из сплава BT3-1.

В таблице 1 приведен химический состав исследуемых сплавов.

Таблица 1 Концентрация компонентов в сплавах ВТ6 и ВТ3-1

	Trongeni pagam resimentali de dimanda de la dela fe								
	Концентрации компонентов, %								
	BT6								
	Al	Al V Fe Si O							
ГОСТ	5,3-6,8	3,5-5,3	н.б. 0,60	н.б. 0,10	н.б. 0,20				
Массив	5,8-6,3	4,3-5,2	0,26-0,50	0,01-0,08	0,11-0,16				
данных	3,6 0,3	7,5 5,2	0,20 0,50	0,01 0,00	0,11 0,10				
	BT3-1								
	Al	Mo	Cr	Fe	Si				
ГОСТ	5,5-7,0	2,0-3,0	0,8-2,3	0,2-0,7	0,15-0,40				
Массив	5,6-6,7	2,0-2,5	1,1-1,9	0,32-0,7	0,27-0,38				
данных	3,0 0,7	2,0 2,3	1,1 1,9	0,32 0,7	0,27 0,38				

Как следует из таблицы 1, содержание всех компонентов соответствовало требованиям нормативной документации.

В результате анализа массива статистических данных определены коэффициенты корреляции (К) каждой из механических характеристик исследуемых сплавов (предел прочности, относительное удлинение, относительное сужение, ударная вязкость) с концентрациями каждого из компонентов, их значения представлены в таблице 2.

Таблица 2 Коэффициенты корреляции механических свойств с химическим составом титановых сплавов ВТ6 и ВТ3-1

		Коэффициенты корреляции						
Элементы	BT6				BT3-1			
	$\sigma_{\scriptscriptstyle B}$	δ	Ψ	KCU	$\sigma_{\scriptscriptstyle B}$	δ	Ψ	KCU
Al	0,456	-0,343	0,005	-0,202	-0,366	0,351	0,066	0,119
V	0,103	0,288	0,738	0,015	-	-	-	-
Mo	-	-	-	-	-0,153	0,169	0,056	0,159
Cr	-	-	-	-	0,494	0,044	0,094	-0,03
Fe	0,275	-0,244	0,238	0,031	0,316	-0,119	0,282	-0,158
Si	0,039	-0,015	-0,18	0,064	0,126	-0,123	-0,136	-0,145
О	0,689	-0,365	-0,385	-0,571	-	-	-	-
Cr+Fe+Si	0,248	-0,215	0,157	0,044	0,664	0,056	0,036	-0,115
Al + O	0,509	-0,366	-0,032	-0,251	-	-	-	-

Из анализа приведенных данных следует:

- на предел прочности сплава ВТ6 наибольшее влияние оказывало изменение концентраций α -стабилизаторов кислорода (K=0,689) и алюминия (K=0,456), упрочняли сплав и β -стабилизаторы железо (K=0,275) и ванадий (K=0,103). Кремний считается одним из сильных упрочнителей титановых сплавов, но ввиду малого содержания в сплаве он не оказывал существенного воздействия;
- на относительное удлинение положительно влиял только ванадий (K=0,246), увеличение концентраций кислорода, алюминия и железа вызывали снижение его значений:
- величина относительного сужения, структурно-чувствительной характеристики, возрастала при увеличении содержания изоморфного β -стабилизатора ванадия (K = 0,545), в меньшей степени эвтектоидообразующего β -стабилизатора Fe (K = 0,153), что связано с увеличением количества пластичной β -фазы по границам зерен; этот показатель не зависел от изменения содержания алюминия, повышение концентраций кремния и кислорода приводило к его снижению;
- изменение концентраций β -стабилизаторов не влияло на ударную вязкость, существенно снижало ее повышение содержания кислорода (K = -0,387) и алюминия (K = -0,126);
- для сплава BT3-1 возрастание концентрации алюминия приводило к снижению прочности (K = -0.366) и повышению относительного удлинения

- (K=0,351), подобное влияние оказывал и изоморфный β -стабилизатор молибден, коэффициенты корреляции всех механических свойств с его содержанием имели небольшие значения, что, вероятно, связано с малым интервалом изменения концентраций (0,5%);
- эвтектоидообразующие элементы, хром, железо и кремний оказывали упрочняющее действие, наиболее существенно влияло изменение содержания хрома (К = 0,494), влияние кремния было более слабым;
- высокое значение (K = 0,664) имел коэффициент корреляции предела прочности с суммой эвтектоидообразующих элементов; на характеристики пластичности эта группа элементов практически не влияла, несколько снижая ударную вязкость (K = -0,115).

Таким образом, влияние изменения содержания α -стабилизатора алюминия и изоморфных β -стабилизаторов (V и Mo) в псевдо α -сплаве BT6 и α + β -сплаве BT3-1 было различным. В сплаве BT6 увеличение концентрации алюминия вызывало существенное упрочнение с одновременным снижением пластичности и ударной вязкости. В сплаве же BT3-1 повышение содержания алюминия приводило к некоторому снижению предела прочности и повышению относительного удлинения и ударной вязкости. Ванадий в сплаве BT6 несколько повышал предел прочности, оказывал заметное положительное влияние на характеристики пластичности. Увеличение концентрации молибдена в сплаве BT3-1 способствовало некоторому увеличению пластических характеристик при снижении прочности. Характер действия эвтектоидообразующих β -стабилизаторов был аналогичным в обоих сплавах.

На рисунке 1 показана зависимость предела прочности от концентрации алюминия в обоих исследованных сплавах, аппроксимированная в виде линейных трендов.

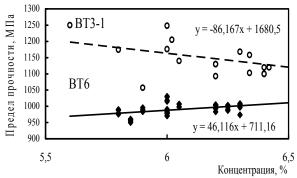


Рис. 1. Зависимость предела прочности сплавов BT6 и BT3-1 от содержания алюминия

На рисунке 2 представлены графики зависимости предела прочности от содержания эвтектоидообразующих β-стабилизаторов.

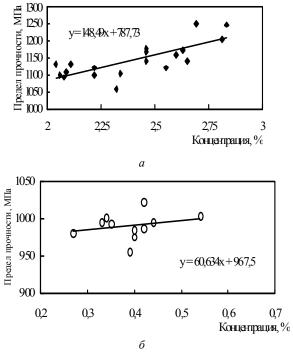


Рис. 2. Зависимость предела прочности сплавов BT3-1 (a) и BT6 (б) от суммы концентраций эвтектоидообразующих β-стабилизаторов

Представленные графики наглядно подтверждают результаты определения коэффициентов корреляции предела прочности и концентрации компонентов титановых сплавов BT6 и BT3-1.

Было рассчитано упрочнение титанового сплава ВТ6 при увеличении концентрации легирующего элемента на 1 % и примеси на 0,1 %. Эти данные в сравнении с литературными по повышению прочности титана легированием приведены в таблице 3.

Таблица 3 Упрочнение титана и его сплавов от введенного элемента

Упрочнение от 1 % компонента, МПа					
Элемент	Al	V	Fe	Si	О для 0,1 %
Данные [1]	50	35	75	120	120
BT6	46	9,7	68	57	70

Как следует из таблицы 3, величины упрочнения от 1 % алюминия для титана и титанового сплава ВТ6 практически совпадают. Для β -стабилизаторов значения прироста предела прочности меньше для сплава ВТ6 по сравнению с титаном. По-видимому, это связано с наличием в сплаве менее прочной β -фазы, в которой они преимущественно располагаются.

Для двухфазного сплава ВТ3-1 рассчитанное значение упрочнения от 1 % железа составило 76 МПа, что близко к известному, для кремния и хрома сответствующие значения превышали приведенные в литературе.

Таким образом, показано, что для псевдо α -сплава BT6 характер зависимости механических свойств от изменения концентраций легирующих элементов и примесей был таким же, как и в двойных системах «титан — легирующий элемент». В двухфазном титановом сплаве BT3-1 увеличение концентраций таких упрочнителей, как алюминий и молибден способствовало снижению значений предела прочности, характер действия эвтектоидообразующих β -стабилизаторов хрома, железа, кремния был аналогичным для двойных систем.

Полученные данные свидетельствуют о том, что в реальных сплавах зависимость механических характеристик от изменения концентраций вводимого компонента отличается от аналогичных зависимостей в двойных системах «титан – легирующий элемент», в большей степени для двухфазного сплава ВТЗ-1. Это обусловлено взаимодействием компонентов сплава и различиями в фазовом составе.

Литература

- 1. С. Г. Глазунов, В. Н. Моисеев. Конструкционные титановые сплавы. М. : Металлургия, 1974. 366 с.
 - 2. У. Цвиккер. Титан и его сплавы. М.: Металлургия, 1979. 540 с.

УДК:669.295.04

Влияние химического состава на механические свойства титановых сплавов ВТ6 и ВТ3-1 / И. А. Маркова, Т. И. Ивченко // Металознавство та термічна обробка металів : науков. та інформ. журнал / Д. : ДВНЗ ПДАБА, 2014. — \mathbb{N}_2 3. — С. —. — Табл. 3. — Рис. 2. — Бібліогр. : (2 назви).

Проанализировано влияние основных компонентов на механические свойства титановых сплавов ВТ6 и ВТ3-1. Показано, что в реальных сплавах зависимость механических характеристик от изменения концентраций вводимого компонента отличается от аналогичных зависимостей в двойных системах «титан — легирующий элемент», в большей степени для двухфазного сплава ВТ3-1. Это обусловлено взаимодействием компонентов сплава и различиями в фазовом составе.

Проаналізований вплив основних компонентів на механічні властивості титанових сплавів ВТ6 і ВТ3-1. Показано, що в реальних сплавах залежність механічних характеристик від зміни концентрацій компоненту, який вводиться, відрізняється від аналогічних залежностей в подвійних системах «титан – легуючий елемент», більшою мірою для двофазного сплаву ВТ3-1. Це обумовлено взаємодією компонентів сплаву і відмінностями у фазовому складі.

Influence of basic components is analysed on mechanical properties of titanium alloys BT6 and BT3-1. It is rotined that in the real alloys dependence of mechanical properties on the change of concentrations of the component differs from analogical dependences in the double systems «titanium – alloying element», in a greater degree for the α + β -alloy BT3-1. It contingently co-operation of components of alloy and distinctions in phase composition