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1. Introduction 

At first, let us consider the case when the number of matrices 

d = 2. 
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0 ...
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v v v l

v v l

v v

vll

B B B

B B
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−

 
 
 = = =
 
 
 

ɶ ɶ ɶ

ɶ ɶ
ɶ

⋯ ⋯ ⋯ ⋯

ɶ

    (1) 

There are two square matrices B1 and B2 over the field ℂ  of 

complex numbers. We need to find the similarity 

transformation (1) reducing both matrices to the equal block-

triangular form. Here vijBɶ  is a block of matrix Bν located in 

the i-th column and j-th row of this partitioned matrix. The 

diagonal blocks must be square submatrices.  

It is necessary that the number l of diagonal blocks to be the 

maximum possible.  

The idea of the method was published in the author's 

monograph [1]. Corresponding computational algorithms and 

results of calculations on handling of applied problems are 

presented in papers [2, 3]. In this paper a detailed theoretical 

basis of the developed methods is given. 

There exists a solution for the case of only one matrix. One 

matrix can be reduced to its Jordan form. There is a famous 

unsolved problem — to create a canonical form for a pair of 

matrices. This problem and the equivalent problems are 

called wild problems [4]. 

2. The General Calculation 
Scheme 

We use the "method of commutative matrix" and the "method 

of invariant subspace." The first one allows you to find the 

similarity transformation, reducing both matrices to a block-

diagonal form with two (at least) blocks on the main diagonal, 

or to determine that such reduction is impossible for these 

matrices. The other method is intended to reduce such two 

matrices that are not reduced to the block-diagonal form, to a 

block-triangular form, or to determine that they cannot be 

reduced to a "strict" block-triangular form either. There is 

also used a method of overcoming the special case (see 

Section 6).  
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This approach is consistently applied firstly to the initial pair 

of matrices, then to pairs of blocks that appear on the main 

diagonal. The process continues until we obtain the pairs of 

blocks that are irreducible to the same block-triangular form. 

From the uniqueness theorem it follows that this approach 

gives the solution of the problem. 

3. The Method of Commutative 
Matrix  

Possibility of application of commutative matrix for 

decoupling of system of equations was described in the 

textbooks on quantum mechanics (for example, see the book 

by Fermi [5]). The method of commutative matrix as such 

was proposed simultaneously by A.K. Lopatin [6] and E.D. 

Yakubovich [7].  

Let us consider ( )BνΛ  set of all matrices that are 

commutative with matrices B1, B2. This set is an algebra over 

the field ℂ  of complex numbers. ( )BνΛ is called a 

centralizer of matrices {Bν}. 

Theorem 1. Let matrices A and X be commutative: 

AХ = ХA, 

matrix X has the block-diagonal form of diag
k

X Х= , where 

the spectra of the blocks
k

Х  are mutually disjoint. Then the 

matrix А also has the block-diagonal form  

А = diag k
А . 

This theorem is given in [8] — Ch. VIII, Theorem 3. See also 

[1] § 2.5. □  

Corollary. Let a matrix ( )X Bν∈Λ  exist, having at least two 

different eigenvalues. Let the column of matrix S be the 

vectors of canonical basis of matrix X. Then similarity 

transformation 1B S B S−
ν ν=ɶ  reduces both matrices to the 

block-diagonal form with two (at least) blocks on the main 

diagonal. 

Proof. Property of matrices commutation is preserved under 

the similarity transformation. Indeed: 

1 1 1 1
AB BA S ABS S BAS S ASS BS

− − − −= ⇔ = ⇔ =
1 1

S BSS AS AB BA
− −= ⇔ =ɶ ɶɶ ɶ , 

where 1 1, ,A S AS B S BS− −= =ɶ ɶ  S is the non-singular matrix. 

Let the matrix X have at least two different eigenvalues and 

commute with matrices B1, B2 and let the columns of the 

matrix S be the vectors of the canonical basis of the matrix X. 

In this case the transformation 
1

X S XS
−=ɶ  reduces matrix X 

to its Jordan form. Therefore, 
1

1 1

2

0
diag( , )

0

X
X X X

X

 
= = 
 

ɶ , 

where X1 is a Jordan block corresponding to the first 

eigenvalue of the matrix X, and X2 — to the second and the 

subsequent (if any) eigenvalues. Both blocks are not empty 

and they have no common eigenvalues. The matrices 
1B S B S−

ν ν=ɶ  commute with the matrix Xɶ . From Theorem 1 

it follows that they have the block-diagonal form. □  

Theorem 2. If matrices Bν are reduced to the block-diagonal 

form with two (at least) blocks on the main diagonal by 

similarity transformation, then there exists a matrix 

( )X Bν∈Λ  with at least two different eigenvalues. 

Proof. Let
11

2

0

0

B
B S B S

B

ν−
ν ν

ν

 
= =  

 

ɶ . Let us compose the 

matrix
1

2

1 0

0 2

E
X

E

⋅ 
=  ⋅ 

ɶ , where E1 and E2 are the identity 

matrices. Matrix 1X S X S −= ɶ  commutes with Bν and has two 

different eigenvalues λ1 = 1, λ2 = 2. □  

So, for the simultaneous reduction of two matrices to the 

block-diagonal form it is necessary and sufficient that the 

centralizer of the matrix to contain the matrix X with 

different eigenvalues.  

To find the centralizer (or more precisely — its basis), you 

can declare all the elements of the matrix X as unknown 

numbers and create a system of linear homogeneous 

algebraic equations corresponding to the matrix equations 

B1Х = ХB1,   B2Х = ХB2.                     (2) 

We have 2n
2
 equations with n

2
 unknowns. If n is small, then 

general solution of this system of equations can be made by 

known methods. Computing method of coping with large n is 

given in [9]. 

Let W1, W2,…, Wr matrices form a basis of centralizer Λ(Bν). 

If the rank r of the centralizer is equal to 1, then the whole 

centralizer consists of only matrices that are multiple of the 

identity matrix. In this case, a reduction of matrices Bν to the 

block-diagonal form is impossible. If r > 1, then among the 

matrices Wk we choose a matrix X that has at least two 

different eigenvalues.  

We draw up a matrix of similarity transformation of the 

column-vectors of the canonical basis of the matrix X. 

The special case, where r > 1, but all matrices of the basis do 

not have different eigenvalues, is discussed below (see 

Section 6). 
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4. The Method of Invariant 
Subspace 

The idea of the method is proposed in [1] (Chapter 7).  

Let us consider matrices Bν (ν = 1, 2) that are not reduced 

simultaneously to the block-diagonal form. Otherwise we 

would have already done it by the method of the commutative 

matrix. We want to find out, whether they could be reduced 

to the block-triangular form. 

4.1. Construction of Algebra 

The first step of the method is the construction of algebra 

with unit ν
( )Bϕ  generated by the initial matrices. You can do 

as follows [2]: firstly, we choose linearly independent 

elements of the matrix {E, B1, B2} and call them "assumed 

basis". Then we consider all the possible products of these 

matrices. If the next product does not belong to the linear 

span of the "assumed basis", we add it to this set and 

consider the elements products of a new "assumed basis". We 

continue this process until none of the products goes beyond 

the linear span. The indication that the element does not 

belong to the linear span of the “assumed basis" is that the 

addition of a new element gives a linearly independent set of 

elements. Verification of linear independence is possible 

using program SLAU5 [1]. 

The possibility of matrices reduction to the block-triangular 

form is equivalent to the reducibility of algebra. The criterion 

of reducibility of algebra: the rank of the algebra ϕ(Вν) is 

smaller than n
2
, where n is matrices order. This follows from 

the Burnside theorem [10] (see also [6], Theorem 1 ').  

4.2. Calculation of an Algebra Radical Ideal 

Theorem 3. If rank r of algebra ϕ(Вν) is smaller than n
2
 and if 

centralizer Λ(Bν) does not contain any matrix X with 

different eigenvalues, then the algebra ϕ(Вν) is non-

semisimple. 

Proof. The condition r < n
2
 means that the algebra ϕ(Вν) is 

reducible [10, 11]. A reducible algebra may be semisimple or 

non-semisimple. Algebra is not semisimple because the 

matrices (including {Bν}) are not reducible to the block-

diagonal form (if only they were reducible, we could do 

this by the method of commutative matrix). Therefore the 

algebra is non-semisimple.

 

□  

A non-semisimple algebra has a nontrivial radical ideal. 

There are formulas to find it [11]: the coordinates α = [α1, 

α2, …, αr]
т
 of any radical ideal element in the basic set of the 

algebra satisfy the equation 

Dα = 0,   D = {dij},                                (3) 

where dij = Sp(Wi Wj), Sp(.) is the trace of matrix. {Wi} is 

the basic set of the algebra.  

The general solution of equation (3) can be obtained by 

known methods. You can, for example, use the program 

SLAU5 [1]. Consequently, it is possible to obtain a basis of 

radical ideal. 

4.3. Finding of Invariant Subspace 

Let Z-set be intersection of all kernels of radical ideal 

elements of the algebra ϕ(Вν). We can find Z-set (its basis) as 

a general solution of the corresponding system of algebraic 

equations. 

Theorem 4. Z-set is a subspace of space 
p

U ∈ℂ . 

Proof. This set can be found with only elements of the basis. 

The calculation corresponds to finding a solution of the 

system of linear homogeneous algebraic equations. The 

general solution of this system, as we know, is a subspace.□  

Theorem 5. If algebra is non-semisimple, then Z-set is a 

nontrivial subspace. 

Proof. In this case, a non-zero radical ideal is a set of 

matrices ( )G τ , where τ is the parameters vector. The radical 

ideal is a nilpotent subalgebra because all its elements are 

nilpotent (see [11, § 7, Theorem 2]). Hence, 

1: ( ) 0kk G∃ ≥ ≠τ ,  1( ) 0kG + =τ . Let 
1

G   be nonzero matrix 

of the set ( )kG τ , and 
1

ξ  — its nonzero column. Then 

1
( ) 0G = ∀τ ξ τ , since ( )( ( )) 0kG G =τ τ . So, the equation 

( )G =τ ξ 0  has nontrivial solutions.

 

□  

Theorem 6. The subspace Z-set is an invariant with respect to 

the matrices {B}.  

Proof. Radical ideal ( )G τ  of algebra ϕ(В) is its ideal. 

Matrices 
v

B  are members of algebra ϕ(В). Hence, we 

obtain
1 2 1

( ) ( ) ,
ν

G B G= = ∀τ ξ τ ξ 0 τ  where 

{ }: ( ) ,  Z G∈ = = ∀ξ ξ τ ξ 0 τ , i.e. Z-set is invariant with respect 

to the set of matrices {Bi}. □  

Thus, for the case when the matrices are not reduced to the 

block-diagonal form, but the rank of the algebra ϕ(Вν) is less 

than n
2
, we have a method of construction of nontrivial 

subspace that is invariant with respect to these matrices.  

4.4. Construction of the Transformation 

Matrix 

Theorem 7. The simultaneous reduction of a pair of matrices 

to the block-triangular form is possible if and only if there 

exists a nontrivial invariant with respect to both matrices 

subspace 
p

U ⊂ℂ .  
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Proof. ( )⇒ . Let  

1 21

3

, 1,2,
0

v v

v v

v

B B
B S B S

B

−  
= = ν = 

 

ɶ  

where 
1v

B  are matrices of order m. Then the set of vectors 

 =  
 

x
y

0
, where 

m∈ℂx , is invariant with respect to matrices 

vBɶ , i.e. if  ,  mV where
  = = ∈  

  

x
y x

0
ɶ ℂ  then 

νV B V∈ ⇒ ∈y yɶ ɶ ɶ .  Let V consist of all vectors of the form 

S=z y , V∈y ɶ . From the invariance of the matrices, it 

follows that
1 νB V= ∈y yɶ ɶ

.
 Therefore,  

 V∈ ⇒z  1

1ν ν νB SB S S SB S V−= = = ∈z y y yɶ ɶ . 

( )⇐  Suppose there exists a nontrivial subspace V that is 

invariant with respect to the matrices 
v

B . Let { }1 2, , ..., ms s s  

be a basis of the subspace V. Let { } 1, ..., m n+s s  be its addition 

to the basis of 
p

U ∈ℂ . Let the columns of matrix S be the 

vectors { }1, ..., ns s . From the rules of matrix multiplication, 

it follows that the equality AS SA= ɶ  is an equivalent to 

similarity transformation 
1

A S AS
−=ɶ ,  and this equality can 

be written as 

1

,  1,
n

k jk j

j

A a k n
=

= =∑s sɶ ,                             (4) 

where 
jkaɶ  are the elements of the matrix Aɶ ,  A is an 

arbitrary matrix. 

The condition of invariance of the subspace V means that any 

element of the basis { }1 ms , ..., s  after multiplication by any 

of the matrix vB  remains in the subspace V and, therefore, is 

a linear combination of elements{ }1, ..., ms s : 

1

m

ν k νjk j

j

B
=

= β∑s sɶ . 

Comparing the last equality with (4) and taking into account 

the linear independence of vectors
js , we obtain 0

vjk
β =ɶ , 

1,j m n= + . These equations are performed at all 1,k m= . 

Consequently, the corresponding elements of matrices 
vBɶ  are 

equal to zero, i.e. modified matrices have the block-triangular 

form. □  

We form the transformation matrix S from the basis vectors 

of this subspace and a subspace being a direct complement to 

it. We locate vectors as columns (see the proof of Theorem 7). 

Direct sum to the subspace can be found as a general solution 

x of the linear homogeneous algebraic equations 

0, 1,
j

j m= =s xΤ
. 

Here, T is a sign of transposition.  

To find the general solution, you can use the program 

SLAU5 [1]. 

5. The Uniqueness Theorem 

There is the uniqueness theorem.  

Theorem 8. Let the matrices iB , i = 1, 2, be reduced to the 

block-triangular form 

1

1

1 1

11 12 1

22 21

1 1

...

0 ...
, 1, 2

0 0 ...

i i i l

i i l

i i

il l

B B B

B B
B S B S i

B

−

 
 
 = = = 
 
  

ɶ

⋯ ⋯ ⋯ ⋯
 

by some similarity transformation and further reduction for 

each pair of blocks {B1kk, B2kk} is impossible. If there exists 

another similarity transformation such that for the resulting 

blocks further reduction is impossible: 

2

2

2 2

11 12 1

22 21

2 2

...

0 ...
, 1, 2

0 0 ...

i i i l

i i l

i i

il l

B B B

B B
B S B S i

B

−

′ ′ ′ 
 ′ ′ ′ = = = 
 

′  

ɶ

⋯ ⋯ ⋯ ⋯
 

then 1 2l l=  and we can determine the correspondence 

between the numbers of blocks such that the blocks Bikk are 

similar to blocks 
1

( ) ( ) ( ) ( ):ij k j k ikk k ij k j k kB B S B S−′ ′= . 

Proof. This theorem follows from Theorem of Jordan — 

Holder (see, also [12], Theorem 1). □  

6. Special Case 

Let us consider the case when the basis of the centralizer 

contains more than one matrix (r > 1), but each of these 

matrices has no different eigenvalues. There is an assumption 

that in this case all the matrices of the centralizer have no 

different eigenvalues and, accordingly, the initial matrices are 

not reduced to the block-diagonal form simultaneously. It 

turns out that this assumption is valid if the algebra Λ( )jB  

has a rank r ≤ 3 and is not valid if rank r = 4 (see [1], 

Theorem 6.6). 
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This Section shows how in this case to reduce the matrices to 

the block-triangular form, without discussing the possibility 

of reducing them to the block-diagonal form. 

Theorem 9. If the rank of the centralizer Λ( )
ν

B  of the 

matrices 
v

B  is greater than one: r >1, then the matrices 
v

B  

are reduced to the block-triangular form. 

Proof. Let W1,…, Wr be the basis of algebra Λ( )
ν

B  and 

W1=E. If W2 matrix have two (or more) different eigenvalues, 

then we can reduce initial matrices to the block-diagonal 

form by method of commutative matrix. Otherwise 

eigenvalue λ  is unique. Therefore matrix 
2

G W E= − λ  is 

nilpotent. Matrix G is nilpotent and nonzero, therefore 

subspace { }  :L G= =ξ ξ 0  is nontrivial. Besides 

ν ν ν
GB B G B L= = = ∀ ∈ξ ξ 0 0 ξ , i.e. subspace L is invariant 

with respect of matrices 
v

B . Consequently, we can reduce 

matrices 
v

B  to the block-triangular form in this case too 

(Theorem 7). □  

We need to create a matrix 
2

G W E= − λ  and find the vectors 

{ }1 2, , ..., ms s s  as the basis of kernel matrix G to construct the 

transformation matrix S. Further construction is the same as 

in Subsection 4.4.  

Note. The condition 1r >  is not necessary to reduce the 

matrices to the block-triangular form. 

7. Examples 

7.1. The First Example 

1 2

0 0 0 3 2 1

0 0 0 , 32 3 4

0 0 5 8 2 5

B B

−   
   = =
   
   −   

 (see [1], example 1.6).  

We use the method of commutative matrix. All the elements 

xij of matrix X are considered as unknown. We constitute a 

system of algebraic equations corresponding to the matrix 

equations B1Х = ХB1, B2Х = ХB2. Its general solution is as 

follows: 

1 1
12 21 22 11 33 11 2116 4

13 23 31 32

; ; ;

=0

x x x x x x x

x x x x

= = = −
= = =

 

where x11 and x21 are free unknowns. Or in other way 

11 21

0 0.0625 0

1 0 0

0 0 -0.25

X x E x

 
 = +  
  

 

If x11 = 0, x21 =1 the eigenvalues of X are: λ1 = λ2 = – 0.25;  

λ3 = 0.25. Then we obtain eigenvectors of matrix X and build 

the transformation matrix  

0 0.25 0.25

0 1 1

1 0 0

S

− 
 =
 
  

 

The initial matrix is reduced to the block-diagonal form: 

1 2

5 0 0 5 4 0

0 0 0 , 4 5 0 .

0 0 0 0 0 11

B B

   −
   

= = −   
   
   

ɶ ɶ                          (5) 

Next, we consider the blocks 

111 211

5 0 5 4
, .

0 0 4 5
B B

−   = =   −   
 For them a set of 

commuting matrices Λ( )νB  is αE, where α is an arbitrary 

number. So reduction of these blocks to the diagonal form is 

impossible (Theorem 2). We verify the possibility of 

reducing by the method of invariant subspace. Matrices E, 

B111 and B211 are linearly independent. Products of any of 

these matrices to the identity matrix E belong to the linear 

span of the first three matrices. Matrix 2

111B  is a member of 

this set too. We consider the product U = B111 B211. Using the 

equality αE + β B111 + γ B211 + λ U = 0 we obtain: α = β = γ 

= λ = 0, i.e. matrix U does not belong to the linear span of 

the first three matrices. We obtain that r = 4 and the condition 

r < n
2
 is not performed.  

Further simplification of the matrices is impossible (see 

Subsection 4.1). Therefore the final result is the matrices (5). 

7.2. The Second Example 

1

1 0

1 2
B

 =  
 

, 
2

7 4
.

7 4
B

 =  − − 
 (see [1], example 7.3).  

Direct verification shows that the corresponding centralizer 

consists only of matrices αE . Therefore, reduction of 

matrices vB  to diagonal form is impossible. 

Let us build algebra ( )vBϕ . Matrices E, B1, B2 are linearly 

independent. Let us denote these matrices W1, W2, W3 

respectively. Let us consider all possible products of matrices 

WkWj and verify whether the resulting matrices are the linear 

combination of the original. Since multiplication by W1 = E 

does not change the matrices, we consider products WkWj for 

k, j = 2, 3. We compute: 2

2

1 0

3 4
W

 =  
 

. We verify whether the 

matrix is the linear combination of the first two ones: 
2

2 1 2α βW W W= + . This equation corresponds to the system of 

equations. Its solution is: β = 3, α = – 2. Consequently, the 
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matrix is a linear combination of the matrices W1 and W2. 

Next, we calculate:  

2 3 3

7 4
,

7 4
W W W

 = = − − 

3 2 2 3

11 8
6 3 2 ,

11 8
W W E W W

 = = − + + − − 

2

3 3

21 12
3 .

21 12
W W

 = = − − 
 

We have found that all products belong to the linear span of 

the matrices W1, W2, W3. Consequently, these matrices form 

the basis of algebra ( )
v

Bϕ . The number of elements of the 

basis r = 3, i.e. 
2 2

2r n< ≡ . This means that the reduction to 

triangular form is possible.  

Let us compose the matrix D = {Sp(WjWk)}. All products 

WjWk are already calculated. We obtain 

2 3 3

3 5 3

3 3 9

D

 
 =
 
  

 

Let us form the system of equations Dα = 0. The general 

solution of this system includes: α1 = –6α3, α2 = 3α3, where 

α3 is a free variable. Let α3 = 1. We obtain [ ]Tα 6 3 1= − . 

We compute the matrix G: 

1 0 1 0 7 4 4 4
6 3 1 .

0 1 1 2 7 4 4 4
G

       = − + + =       − − − −       
The 

equations G =ξ 0  are of the form: 
1 2

1 2

4ξ 4ξ 0,

4ξ 4ξ 0.

+ =
− − =

 Hence: 

1 2
ξ ξ= − . We put: 

2
ξ 1= . Therefore, the basis of Z-set 

consists of one vector: [ ]T

1s ξ 1 1= = − . This vector and the 

vector [ ]T

1 1 0=e  are linearly independent. Therefore: 

1 1

1 0
S

− =  
 

. Then we obtain  

1
0 1

1 1
S −  =  

 
; 1

1B S E S E−= =ɶ ;  

2

0 1 1 0 1 1 1 1

1 1 1 2 1 0 0 2
B

−       = =       
       

ɶ ; 

3

0 1 7 4 1 1 3 7
.

1 1 7 4 1 0 0 0
B

− −       = =       − −       
ɶ

 

7.3. The Third Example 

1 2

1 1
, 0.5

1 3
B E B

 = =  − 
. These matrices describe the 

motion of the system from [13].  

It is clear, that we can reduce the matrix B2 to its Jordan form. 

But let us consider the approach set forth above. 

Let us find matrix X that commutes with the initial matrices. 

As a result of calculations we obtain: X = αΕ, where α is an 

arbitrary parameter. Since matrix X has no different 

eigenvalues, reduction of the initial matrices to the block-

diagonal form is impossible.  

Next, we use the method of invariant subspace. 

We act as in the previous example. We obtain: r = 2. The 

condition 
2

r n<  is performed. Next: D = 
2 2

2 2

 
 
 

.  

The system of equations Dy = 0 takes the form: 2y1 + 2y2 = 0, 

2y1 + 2y2 = 0. As a result, we obtain: y = 
1

1

 
 − 

. Basis of 

radical ideal is a matrix G: 

1 0 1 1 1 1
1 1 0.5 0.5

0 1 1 3 1 1
G

−     = ⋅ − ⋅ ⋅ = ⋅     − −     
. 

Equation Gξ = 0 takes the form: ξ1 – ξ2 = 0,  ξ1 – ξ2 = 0. The 

basis of general solutions of the system consists of the vector 

1

1

1

 =  
 

s . This vector and the vector 
2

1

1

 =  − 
s  are linearly 

independent. Therefore, 
1 1

1 1
S

 =  − 
. We obtain the 

triangular matrices: 

1

1B S ES E−= =ɶ , 1

2 2

1 1

0 1
B S B S− − = =  

 
ɶ . 

Peculiarity of this example is that here exists a non-compact 

group of matrices commuting with the initial matrices.
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8. Generalizations 

The problem of getting the best block-triangle form can be 

formulated in another way: to find a transformation matrix S 

such that the maximum of the orders of the diagonal blocks 

will be the lowest possible. The uniqueness theorem implies 

that by solving the problem of getting the maximum number 

of blocks we simultaneously obtain the block having the 

lowest possible order. 

It is clear that there can be more than two initial matrices. In 

this case course of solution will have no changes. Only the 

number of matrix equations (2) or the amount of the initial 

matrices for composition of the algebra ϕ(Вν) will be 

increased. 

Let us consider the problem of reduction of matrices 

, 1,B dν ν =  to the block-triangular form by transformation 

ˆ
v vB HB S= , where H and S are non-singular square matrices. 

This transformation is more effective than the similarity 

transformation (1). The problem is solved in the case, where 

one of the initial matrices is nonsingular. 

Next, we need Theorem 10 by A.K. Lopatin. Refined 

formulation and proof of the result is as follows (see [1], 

Theorem 7.4). 

Theorem 10. There exists a similarity transformation 

reducing matrix ( 1, )vB v d=  to the block-triangular form 

with l blocks on the main diagonal if and only if there exists 

a set of matrices  )   ( )pG , ∈ℂτ τ(  such that 

( )      j

v jG B L v= ∀ ∀τ 0 τ , 

{ } 0 1 2

n

lL L L ... L≡ ⊂ ⊂ ⊂ ⊂ ≡ℂ0 , 1dim dimj jL L+ >        (6) 

where { } : ( )    j p

jL G= = ∀ ∈ξ t ξ 0 t ℂ . 

Proof. ( )⇒  Let matrices 1

v vB S B S−=ɶ  be block-triangular. 

Let blocks 
vkk

B  on the main diagonal be of the order 
k

m  and 

1

d

k

k

m n
=

=∑ . We choose a set of matrices ( )G τ  in the form 

1( ) ( )G SG S −= ɶτ τ , where the matrices ( )Gɶ τ  have the same 

kind of block as 
vBɶ ; all the blocks of the variable matrices 

( )Gɶ τ  standing above the main diagonal are filled with 

parameters 
1 2 pτ ,  τ , ..., τ , and other elements of this matrix 

are zero. Then 

{ }Т
Т Т

1 j , ... , , ...  jL  = =  
ɶξ x x 0 0 , 

where 
m

k
k ∈ℂx .□  

It is clear that ( ) 0j

ν j
G B L= ∀ ∈ɶɶ ɶτ ξ ξ . After the 

transformations -1( ) ( )G SG S= ɶτ τ , 1

v vB SB S −= ɶ , S= ɶξ ξ  this 

equality is still valid. 

( )⇐  The condition ( ) ( )( )j j

ν j ν j
G B L G B L= =τ τ 0  means that 

v j jB L L⊂ , i.e. a subspace 
jL  is invariant with respect to the 

matrix 
v

B . □  

Let us denote ( , )
v

l B S′  as the number of blocks on the main 

diagonal of the matrices 1

v vB S B S−=ɶ  reduced to the block-

triangular form. Let 

: det 0
( ) max ( , )ν v

S S
l B l B S

≠
′= . 

Theorem 11. Let , 1,B v dν =  be matrices. If 
1

B E= , then 

( ) ( )
v v

l NB l B≤ , where N is any non-singular matrix. 

Proof. Let 
1

N  and 
1

S  be the transformation matrices, 

whereby the initial matrices 
v

B  are reduced to the block-

triangular form by formula 
1

1 1 1
ˆ

v v
B S N B S−=  and have the 

maximum possible number of blocks on the main diagonal. 

In this case matrices 
1

1
ˆ ˆ( )

v v
D B B−=ɶ  have the same block-

diagonal form. According to Theorem 10, there must be the 

matrices  )   ( ),pG , C∈τ τ(  such that 

( ) 0   j

v j
G D L v= ∀ ∀ɶ ɶ ɶτ τ , 

{ } 0 1 2
1

n

l
L L L L≡ ⊂ ⊂ ⊂ ⊂ ≡ɶ ɶ ɶ ɶ… ℂ0 , 1

dim dim
j j

L L+ >ɶ ɶ ,  

where { } : ( )  j

jL G= =ɶ ɶɶɶ ξ τ ξ 0 . 

Let us perform a similarity transformation 1

1 1v vD S D S −= ɶ , 

-1( ) ( )G SG S= ɶτ τ , and replacement of vectors ɶξ  into 
1

S= ɶξ ξ . 

Equations (6) are retained. Moreover, 
v v

D B= :  

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1( ) ( )v v vD S D S S S N S S N B S S− − − − −= = =ɶ  

1 ? 1 1

1 1 1 1 1 1 1 1v vS S N S S N B S S B− − −= = . 

Using Theorem 10, we obtain 
1

( )
v

l B l≥ .□  

For finding a transformation ˆ
v v

B HB S=  with the greatest 

possible number of blocks on the main diagonal it is 

sufficient to solve this problem by a similarity transformation 

for supportive matrices 1

1  1v vC B B−
+= , v 1,= µ , 1dµ = − . 
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9. Conclusion 

Thus, the problem is completely solved. A method to bring a 

set of matrices to the best block-triangular form has been 

developed.  

This result is of practical significance. This method can 

simplify a system of linear differential equations containing 

several matrices of coefficients [1, 14]. Equations decoupling 

to independent subsystems corresponds to reducing matrices 

to the block-diagonal form. Reduction of matrices to the 

block-triangular form corresponds to “hierarchic” (vertical) 

decoupling. Thus, first subsystem does not contain variables 

of other subsystems. Only variables of the first and the 

second subsystems are present in the second subsystem, etc. 

The number of such subsystems can be greater than at 

ordinary decoupling. 

10. Next Directions of 

Investigation 

It would be helpful to solve the following problems as well. 

� The solution of the same problem for matrices over other 

fields (real numbers, rational numbers, etc.). 

� More detailed study of the special case is considered in 

Section 6. 

� Using the transformation ˆ
v vB HB S=  without requiring 

non-singularity of one of the matrices. 

� Reduction to the best block-triangular form n×n-matrix A 

and n × n-matrix m-matrix B by transformation

1 1

1  1 1 2
ˆ,A S AS B S BS− −= =ɶ . Here S1 and S2 are nonsingular 

square matrices of corresponding orders. This problem and 

others, similar to it, are necessary for the hierarchic 

decoupling of systems of equations with rectangular 

coefficient matrices (see [1] Сhapter 8 and [12]). 
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