УДК 624.04:519.6 DOI: 10.30838/J.BPSACEA.2312.230221.14.713

ДИНАМІЧНЕ МОДЕЛЮВАННЯ ТА РАЦІОНАЛЬНЕ ПРОЕКТУВАННЯ БУДІВЕЛЬ ІЗ ДЕМПФЕРАМИ СУХОГО ТЕРТЯ ЗА ДОПОМОГОЮ МЕТОДІВ ШТУЧНОГО РОЙОВОГО ІНТЕЛЕКТУ

САВИЦЬКИЙ М. В.¹, докт. техн. наук, проф., ДАНІШЕВСЬКИЙ В. В.^{2*}, докт. техн. наук, проф., ГАЙДАР А. М.³, ст. викл.

¹ Кафедра залізобетонних і кам'яних конструкцій, Придніпровська державна академія будівництва та архітектури, вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38 (056) 745-23-72, e-mail: <u>ms@pgasa.dp.ua</u>, ORCID ID: 0000-0003-4515-2457 ^{2*} Кафедра биліренциої моченіни та систри мотеріалі. Примлітельни в с

^{2*} Кафедра будівельної механіки та опору матеріалів, Придніпровська державна академія будівництва та архітектури, вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38 (056) 756-33-13, e-mail: <u>vladyslav.danishevskyy@gmail.com</u>, ORCID ID: 0000-0002-3049-4721

³ Кафедра технології будівельного виробництва, Придніпровська державна академія будівництва та архітектури, вул. Чернишевського, 24-а, 49600, Дніпро, Україна, тел. +38 (096) 367-70-57, e-mail: <u>nastuel_gaidar@pgasa.dp.ua</u>, ORCID ID: 0000-0001-8993-1458

Анотація. Постановка проблеми. Демпфери сухого тертя широко використовуються для захисту будівель від динамічних та сейсмічних навантажень. Їх перевагами є простота і надійність конструкції, низька вартість, зручність монтажу, а також високі дисипативні характеристики. Визначення місць розташування демпферів всередині будівлі є складним завданням, яке вимагає комплексного аналізу динамічних властивостей споруди і, як правило, не може бути вирішено в рамках стандартних методів проектування. Тому актуальною проблемою є розроблення нових методів розрахунку конструкцій з демпферами сухого тертя, що дозволяють знаходити оптимальні проектні рішення для мінімізації динамічних і сейсмічних впливів. *Мета стато*. Розвинути метод рою частинок для визначення місць раціонального розташування демпферів сухого тертя у багатоповерхових каркасних будинках для підвищення їх сейсмічної стійкості. **Висновки**. Розроблено аналітичну динамічну модель будинку із демпферами сухого тертя. Розроблено математичну модель сейсмічного навантаження. Досліджено нестаціонарні коливання будинку під дією сейсмічних навантажень. Одержано чисельні розв'язки нелінійних динамічних рівнянь за допомогою методу Рунге-Кутти. Визначено місця раціонального розташування демпферів сухого тертя, які забезпечують мінімальні прискорення та відносні перекоси поверхів. Одержані результати можуть використовуватись при розробленні проектів будівель і споруд із підвищеною стійкістю до сейсмічних і динамічних впливів.

Ключові слова: сейсмостійке будівництво; демпфери сухого тертя; динамічні навантаження; нестаціонарні коливання; раціональне проектування; ройовий інтелект

DYNAMIC MODELLING AND OPTIMAL DESIGN OF BUILDINGS WITH FRICTION DAMPERS USING PARTICLE SWARM OPTIMIZATION

SAVYTSKYI M.V.¹, Dr. Sc. Tech.), Prof., DANISHEVSKYY V.V.^{2*}, Dr. Sc. (Tech.), Prof., GAIDAR A.M.³, Senior Lecturer

¹ Department of Reinforced Concrete and Stone Structures, Prydniprovska State Academy of Civil Engineering and Architecture, 24-A, Chernyshevskoho Str., Dnipro, 49600, Ukraine, tel. +38 (056) 745-23-72, e-mail: <u>ms@pgasa.dp.ua</u>, ORCID ID: 0000-0003-4515-2457

^{2*} Department of Structural Mechanics and Strength of Materials, Prydniprovska State Academy of Civil Engineering and Architecture, 24-A, Chernyshevskoho Str., Dnipro, 49600, Ukraine, tel. +38 (056) 756-33-13, e-mail: <u>vladyslav.danishevskyy@gmail.com</u>, ORCID ID: 0000-0002-3049-4721

³ Department of Construction Production Technology, Prydniprovska State Academy of Civil Engineering and Architecture, 24-A, Chernyshevskoho Str., Dnipro, 49600, Ukraine, tel. +38 (096) 367-70-57, e-mail: <u>nastuel_gaidar@pgasa.dp.ua</u>, ORCID ID: 0000-0001-8993-1458

Abstract. *Formulation of the problem.* Dry friction dampers are widely used for the protection of buildings from dynamic and seismic loads. Their advantages are the simplicity and reliability of the design, low costs, easy installation and maintenance, as well as high dissipative characteristics. Determining the location of friction dampers inside a building is a complex task that requires a comprehensive analysis of the dynamic properties of the structure and, as a rule, cannot be solved within the framework of standard design methods. Therefore, a crucial problem is the development of novel methods for calculating structures with dry friction dampers allowing finding optimal design solutions to minimize dynamic and seismic impacts. *The purpose of the sudy.* The method of particle swarm optimization is developed for the prediction of rational locations of friction dampers in multi-storey frame buildings to enhance their resistance to seismic loads. *Conclusions.* An analytical model describing the dynamic behavior of buildings with friction dampers is proposed. A mathematical model of seismic loads is developed. Non-stationary vibrations of a building under the seismic loads are investigated. The governing non-linear dynamical equations are integrated numerically by the Runge-Kutta method. The rational locations of friction dampers are determined ensuring the minimal inter-storey drifts and accelerations of the building. The obtained results can be used in the design of houses and structures with enhanced resistance to seismic and dynamic impacts.

Keywords: *earthquake engineering; dry friction dampers; polymer-concrete buildings; dynamic loads; non-stationary vibrations; rational design; collective intelligence*

1. Вступ. Згідно з принципами сталого розвитку та циркулярної економіки важливим завданням сучасного будівництва є розроблення й використання легких економічних конструкцій, ЯКІ характеризуються низьким споживанням матеріальних та енергетичних ресурсів на всіх етапах свого життєвого циклу. Стійкість таких конструкцій до дії динамічних та сейсмічних навантажень забезпечується за допомогою спеціальних пристроїв: інерційних гасителів коливань, сейсмічної ізоляції, а також демпферів різних типів [1].

В останні роки широке поширення одержали демпфери сухого тертя. Такі пристрої складаються з двох фрикційних елементів, що прослизають відносно один одного. Фрикційні елементи можуть бути виготовлені з різних матеріалів, але найчастіше використовується сталь. Переваги демпферів сухого тертя наступні:

 простота і надійність конструкції: не потребують технічного обслуговування в процесі експлуатації;

 багаторазовість використання: не потребують заміни після землетрусу;

 невисока вартість пристроїв та їх монтажу;

простий та швидкий монтаж:
 можливість зручної реконструкції будівель,
 які експлуатуються;

- високі дисипативні властивості;

 – широкий діапазон робочих зусиль (від 2 до 1 500 кН). На рисунку 1 наведено приклад застосування демпферів сухого тертя у хмарочосі Torres Cuarzo, зведеного у Мехіко у 2018 році. Будинок має висоту 180 м. Сейсмічний захист забезпечується за допомогою 450 демпферів, встановлених у вигляді розкосів у центральному прольоті будинку.

Puc. 1. Хмарочос Torres Cuarzo, Mexiko (https://www.quaketek.com)

Визначення місць розташування демпферів всередині будівлі є складною задачею, яка потребує комплексного аналізу динамічних властивостей споруди і, як правило, не може бути розв'язана у рамках стандартних методів проектування [2-4]. 3 математичної точки зору пошук раціонального розташування демпферів є задачею нелінійної неопуклої оптимізації, для розв'язання якої можуть застосовуватися різні підходи [5; 6]. Останніми роками інтенсивно розвиваються методи штучного колективного інтелекту [7-9], які мають ряд переваг у порівнянні з класичними процедурами: не потребують обчислення градієнту цільової функції, рівномірно дослідити дозволяють весь заданий простір розв'язків та уникають «зависання» в локальних екстремумах. Одним із таких методів є метод рою частинок (МРЧ).

МРЧ імітує поведінку біологічної системи, що складається з окремих осіб (частинок) та здатна до самоорганізації. Положення кожної частинки відповідає розв'язків ОДНОМУ З можливих задачі. Частинки переміщуються просторі V розв'язків відповідно до заданих правил, запам'ятовують значення цільової функції у попередніх пройдених ними точках та обмінюються цією інформацією між собою. частинки В результаті поступово наближаються до найкращого положення, яке відповідає глобальному екстремуму цільової функції. Таким чином, незважаючи на відсутність будь-якого центру керування, система в цілому демонструє колективну інтелектуальну поведінку. МРЧ був запропонований спочатку засіб ЯК моделювання соціальної поведінки людських спільнот [10]. У монографії [11] розгорнуте дослідження наведено філософських аспектів феномену колективного інтелекту та, зокрема, МРЧ. У подальшому метод був спрощений та адаптований для розв'язання математичних оптимізації. залач Огляд практичних застосувань МРЧ у різних галузях сучасної науки і техніки наведено у оглядових статтях [12; 13]. Відмітимо, що даний метод є евристичним. Його збіжність не доведено строго математично, але експериментально встановлено, що у більшості випадків він дає достатньо хороші результати.

Дана робота присвячена динамічному моделюванню багатоповерхового каркасного будинку з демпферами сухого тертя та визначенню місць раціонального розташування демпферів за допомогою МРЧ. У розділі 2 розглянуто 2D модель будинку, складено розрахункову схему та наведено вихідні динамічні рівняння. У розділі 3 виконано модальний аналіз. Власні частоти, визначені на основі запропонованої розрахункової порівняно схеми, 3 результатами чисельного моделювання у ЛІРА-САПР. програмному комплексі У розділі 4 наведено процедуру чисельного розв'язання динамічних рівнянь за допомогою методу Рунге-Кутти. Розділ 5 присвячено математичному моделюванню сейсмічного навантаження. У розділі 6 визначено раціональні місця розташування демпферів сухого тертя. Висновки наведено у розділі 7.

2. Модель будинку та розрахункова Розглянемо 2D модель схема. шестиповерхового каркасного будинку (рис. 2). Матеріал каркасу – залізобетон. Перерізи елементів становлять: 400×400 мм (колони) та 250×600 мм (ригелі). Вага каркасу становить 720 кН. Демпфери сухого тертя можуть бути встановлені у вигляді розкосів у центральному прольоті; місця їх можливого розташування позначено рисунку 2 штриховими лініями.

У випадку горизонтального сейсмічного навантаження напружено-деформований стан будинку визначається головним чином згинальними деформаціями колон, тоді як поздовжніми деформаціями елементів каркасу можна знехтувати. Відповідно до цього припущення приймемо наближену розрахункову схему у вигляді вертикального консольного стрижня із зосередженими масами, які розташовані на рівні перекриттів переміщуватись можуть та y горизонтальному напрямку (рис. 3).

Рівняння руху запишуться наступним чином:

Рис. 2. Модель рами шестиповерхового каркасного будинку (розміри в метрах)

Рис. 3. Розрахункова схема із зосередженими масами

$$M_{k}\ddot{u}_{k} + K_{k}\left(u_{k} - u_{k-1}\right) + C_{k}\left(\dot{u}_{k} - \dot{u}_{k-1}\right) + F_{k} - K_{k+1}\left(u_{k+1} - u_{k}\right) - C_{k+1}\left(\dot{u}_{k+1} - \dot{u}_{k}\right) - F_{k+1} = 0,$$
(1)

де M_k – маси поверхів; K_k , C_k – коефіцієнти жорсткості та в'язкості, відповідно; F_k – сили реакції демпферів; u_k – горизонтальні переміщення поверхів; k – номер поверху, $1 \le k \le 6$; u_0 – горизонтальне переміщення основи. Точка зверху позначає диференціювання за часом. Відповідно до фізичного змісту задачі, у рівняннях (1) $u_7 = u_7 = k_7 = C_7 = F_7 = 0.$

Модуль Юнга матеріалу каркасу $E = 32.5 \ \Gamma \Pi a$ і густина $\rho = 2 \ 400 \ \kappa r/m^3$. Тоді для споруди, що розглядається, визначено $M_k = 12 \ 010 \ \kappa r$ і $K_k = 7.13 \cdot 10^4 \ \kappa H/m$ для кожного поверху. Логарифмічний декремент коливань залізобетонної конструкції прийнято рівним $\partial = 0.3 \ [14]$. Тоді знаходимо $C_k = (\delta/\pi) \sqrt{M_k K_k} = 88.4 \ \kappa H \cdot c/m$.

Сила реакції демпферу F_k постійна за модулем і скерована у напрямку, протилежному відносній швидкості його кінців. Її можна визначити за формулою:

$$F_k = N_{kx} \operatorname{sgn}\left(\dot{u}_k - \dot{u}_{k-1}\right), \qquad (2)$$

де N_{kx} – проекція зусилля тертя демпферу N_k на горизонтальну вісь, $N_{kx} = N_k \cos_{\alpha}; \alpha - кут$ нахилу демпферу (рис. 1).

Рівняння (2) описує прямокутну петлю гістерезису непружньої деформації демпферу. Запропонована теоретична добре модель узгоджується 3 експериментальними даними [15] (рис. 4). Відзначимо, що співвідношення (2) вносить суттєву нелінійність динамічне V рівняння (1).

Переміщення, мм

3. Модальний аналіз. Для підтвердження достовірності запропонованої розрахункової схеми розглянемо вільні коливання конструкції без демпферів та внутрішнього тертя. Приймемо $C_k = F_k = 0$, $M_k = M$, $K_k = K$ та будемо шукати періодичний розв'язок у вигляді:

$$u_0 = 0, \ u_k = A_k \sin(2\pi ft),$$
 (3)

де $A_{\rm III}$ – амплітуди переміщень поверхів, f – частота коливань. Підставивши (3) у рівняння (1), одержуємо однорідну систему лінійних алгебраїчних рівнянь для невідомих амплітуд A_k :

$$A_{5} + (4\pi^{2}f^{2}M/K - 1)A_{6} = 0, \qquad (4)$$

$$A_{4} + (4\pi^{2}f^{2}M/K - 2)A_{5} + A_{6} = 0, \qquad (4)$$

$$A_{3} + (4\pi^{2}f^{2}M/K - 2)A_{4} + A_{5} = 0, \qquad (4)$$

$$A_{2} + (4\pi^{2}f^{2}M/K - 2)A_{4} + A_{5} = 0, \qquad (4\pi^{2}f^{2}M/K - 2)A_{3} + A_{4} = 0, \qquad (4\pi^{2}f^{2}M/K - 2)A_{2} + A_{3} = 0, \qquad (4\pi^{2}f^{2}M/K - 2)A_{1} + A_{2} = 0.$$

Система (4) має нетривіальний розв'язок тоді і тільки тоді, якщо визначник матриці, складеної з її коефіцієнтів, дорівнює нулю. Виконуючи дану умову, знаходимо характеристичне рівняння:

$$4096\pi^{12}M^{6}f^{12} - 11264\pi^{10}KM^{5}f^{10} + +11520\pi^{8}K^{2}M^{4}f^{8} - 5376\pi^{6}K^{3}M^{3}f^{6} + (5) +1120\pi^{4}K^{4}M^{2}f^{4} - 84\pi^{2}K^{5}Mf^{2} + K^{6} = 0.$$

Рівняння (5) дозволяє обчислити власні частоти конструкції.

На рисунку 5 одержані дані порівняно із результатами чисельного моделювання скінченних елементів. метолом який програмному виконано у комплексі для вихідної ЛІРА-САПР 2D моделі (рис. 2). Зазначимо, що знайдені розв'язки добре узгоджуються між собою. Періоди форм власних коливань перших двох діапазону переважаючих належать до періодів сейсмічних акселерограм 0,1...2 с [14], що спричиняє небезпеку виникнення резонансу під час землетрусу.

На рисунку 6 наведено перші шість форми власних коливань, визначені за допомогою програмного комплексу ЛІРА-САПР для вихідної 2D моделі будинку. Аналіз характеру деформацій конструкції свідчить, що переважаючими є горизонтальні переміщення поверхів. Динамічний напружено-деформований стан будівлі визначається насамперед згинальними деформаціями колон. При

цьому поздовжні деформації конструктивних елементів, спричинені коливаннями, є незначними і у першому наближенні ними можна знехтувати. Це підтверджує справедливість фізичних припущень, покладених в основу моделі із зосередженими масами. Зауважимо, що зі збільшенням частоти точність даної моделі буде зменшуватися.

Рис. 5. Власні частоти вільних коливань: □ – модель із зосередженими масами; ○ – вихідна модель, розрахунок у програмному комплексі ЛІРА-САПР

Рис. 6. Форми власних коливань, визначені у програмному комплексі ЛІРА–САПР

4. Застосування методу Рунге-Кутти. У подальшому нелінійні рівняння руху (1), доповнені відповідними початковими умовами, інтегроване чисельно за допомогою методу Рунге-Кутти четвертого порядку. Чисельна процедура зводиться до наступного. Шляхом заміни змінних $u_k = v_k$ запишемо шість диференційних рівнянь руху другого порядку (1) у вигляді дванадцяти диференційних рівнянь першого порядку:

$$\dot{u_{k}} = Q_{k}(v_{k}),$$

$$\dot{v_{k}} = R_{k} \left(u_{k-1}, u_{k}, u_{k+1}, v_{k-1}, v_{k}, v_{k+1} \right), \qquad (6)$$

де:

$$Q_{k}(v_{k}) = v_{k},$$

$$R_{k}(u_{k-1}, u_{k}, u_{k+1}, v_{k-1}, v_{k}, v_{k+1}) =$$

$$-\frac{1}{M_{k}} \Big[K_{k}(u_{k} - u_{k-1}) + C_{k}(v_{k} - v_{k-1}) + F_{k} -$$

$$-K_{k+1}(u_{k+1} - u_{k}) - C_{k+1}(v_{k+1} - v_{k}) - F_{k+1} \Big].$$

Фізичний зміст введених змінних: v_k – швидкості поверхів; v_0 – швидкість основи.

Дискретизуємо інтервал інтегрування $0 \le t \le t_{\text{max}}$ сіткою з кроком Δt , так що $t = m\Delta t, m = 0, 1, 2, \dots$ Позначимо значення функцій, що розшукуються, у вузлах сітки наступним чином: $u_k^{(m)} = u_k(m\Delta t)$, $v_k^{(m)} = v_k(m\Delta t)$. Початкові умови мають вигляд: $u_0(0) = u_0^{(0)}, u_k(0) = u_k^{(0)}, v_0(0) = v_0^{(0)},$ $v_k(0) = v_k^{(0)}$. Знаючи $u_0^{(0)}, u_k^{(0)}, v_0^{(0)}, v_k^{(0)}$ розв'язок системи (6) обчислюється за ітераційними формулами [16]:

$$u_{k}^{(m+1)} = u_{k}^{(m)} + \frac{1}{6} (p_{1} + 2p_{2} + 2p_{3} + p_{4}), \quad (7)$$
$$v_{k}^{(m+1)} = v_{k}^{(m)} + \frac{1}{6} (s_{1} + 2s_{2} + 2s_{3} + s_{4}),$$

де

$$p_{1} = Q_{k} \left(v_{k}^{(m)} \right) \Delta t , \qquad (8)$$

$$s_{1} = R_{k} \left(u_{k-1}^{(m)}, u_{k}^{(m)}, u_{k+1}^{(m)}, v_{k-1}^{(m)}, v_{k}^{(m)}, v_{k+1}^{(m)} \right) \Delta t ,$$

$$p_{2} = Q_{k} \left(v_{k}^{(m)} + \frac{S_{1}}{2} \right) \Delta t ,$$

$$s_{2} = R_{k} \left(u_{k-1}^{(m)} + \frac{P_{1}}{2}, u_{k}^{(m)} + \frac{P_{1}}{2}, u_{k+1}^{(m)} + \frac{P_{1}}{2} \right) ,$$

$$v_{k-1}^{(m)} + \frac{S_{1}}{2}, v_{k}^{(m)} + \frac{S_{1}}{2}, v_{k+1}^{(m)} + \frac{S_{1}}{2} \right) \Delta t ,$$

$$p_{3} = Q_{k} \left(v_{k}^{(m)} + \frac{S_{2}}{2} \right) \Delta t ,$$

$$\begin{split} s_{3} &= R_{k} \left(u_{k-1}^{(m)} + \frac{p_{2}}{2}, u_{k}^{(m)} + \frac{p_{2}}{2}, u_{k+1}^{(m)} + \frac{p_{2}}{2}, \\ v_{k-1}^{(m)} + \frac{s_{2}}{2}, v_{k}^{(m)} + \frac{s_{2}}{2}, v_{k+1}^{(m)} + \frac{s_{2}}{2} \right) \Delta t, \\ p_{4} &= Q_{k} \left(v_{k}^{(m)} + s_{3} \right) \Delta t, \\ s_{4} &= R_{k} \left(u_{k-1}^{(m)} + p_{3}, u_{k}^{(m)} + p_{3}, u_{k+1}^{(m)} + p_{3}, \\ v_{k-1}^{(m)} + s_{3}, v_{k}^{(m)} + s_{3}, v_{k+1}^{(m)} + s_{3} \right) \Delta t. \end{split}$$

Динамічні розрахунки каркасних будівель методом Рунге-Кутти виконано у середовищі комп'ютерної алгебри 3 відкритим кодом Maxima. Чисельну процедуру (7),(8)реалізовано i3 використанням бібліотек стандартних підпрограм.

5. Математична модель сейсмічного навантаження. Навантаження, шо виникають внаслідок землетрусів, носять характер. Відповідно стохастичний до математичної статистики методів такі фізичні явища можуть бути представлені у вигляді гауссовського процесу – сукупності випадкових величин із нормальним законом розподілу [17]. Поділимо переважаючий частотний діапазон землетрусів $0.2 \leq f \leq 34$ Гц на інтервали шириною Δf_i , *j* = 1...*j*_{max}. Ширину та кількість *j*_{max} інтервалів прийнято відповідно нормативних вимог [14]. Прискорення ґрунту опишемо стохастичним гауссовським вигляді суперпозиції процесом V гармонічних хвиль із дискретно заданими частотами f_i і випадковими фазами φ_i :

$$\ddot{u}_0 = \sum_{j=1}^{j_{\text{max}}} \sqrt{2S(f_j)\Delta f_j} \cos(2\pi f_j t + \varphi_j), \quad (9)$$

де $f_{j+1} = f_j + \Delta f_j$, φ_j – випадкові величини із нормальним розподілом в інтервалі $0 \le \varphi_j \le 2\pi$; S(f) – спектральна густина енергії землетрусу.

Спектральну густину енергії землетрусу визначено за допомогою емпіричної моделі Канаі-Таїмі [18; 19]:

$$S(f) = S_0 \frac{1 + 4\zeta_g^2 (f/f_g)^2}{\left[1 - (f/f_g)^2\right]^2 + 4\zeta_g^2 (f/f_g)^2},$$

$$S_0 = \frac{a_p^2}{p_g^2 \pi^2 f_g \left[2\zeta_g + (2\zeta_g)^{-1}\right]}.$$
 (10)

У формулах (10) fg – переважаюча частота коливань ґрунту; ζ_g – безрозмірний коефіцієнт, що враховує демпфуючі властивості ґрунту; *a*_p – пікове прискорення грунту; $p_{\rm g}$ – коригуючий коефіцієнт, $p_{\rm g}$ = 3. При подальших розрахунках прийнято 0.4g, = що відповідає району $a_{\rm p}$ сейсмічністю 9 балів [14].

Параметри $f_{\rm g}$ і $\zeta_{\rm g}$ залежать від властивостей грунту у районі будівництва (табл. 1). На рисунку 7 наведено розподіл енергії землетрусу залежно від частоти для різних типів грунтів. М'які ґрунти характеризуються високою концентрацією сейсмічної енергії на низьких частотах грунтів 1...1.5 Гц. Для скельних характерним є більш рівномірний розподіл енергії, яка досягає максимуму в діапазоні приблизно 2...6 Гц. Акселерограми землетрусів, побудовані на основі моделей (9) та (10), представлені на рисунку 8.

Таблиця 1

TT • •		•	1001
Innewinn	попометни	TNUTID	1700
дипамични	napamerph	I D Y II I ID	1401
7 1	1 1	1.	

Тип	$f_{\rm g},$ Гц	$\zeta_{ m g}$	Тривалість	
ґрунту			землетрусу, с	
М'який	1.2	0.85	25	
Жорсткий	2.5	0.6	20	
Скельний	4	0.6	15	

Рис. 7. Спектральна густина *S*(*f*) енергії землетрусу

6. Раціональне розташування демпферів сухого тертя. Приймемо, що у центральному прольоті будинку може бути демпфери у встановлено три вигляді місця розкосів. Можливі розташування демпферів позначені на рисунку 2 штриховими лініями. Зусилля тертя кожного демпферу становить N = 120 кH, а сума їх зусиль дорівнює половині ваги конструкції, що відповідає рекомендаціям, наведеним у літературі [1; 3; 4]. Необхідно визначити, на потрібно яких поверхах розташувати демпфери для максимального сейсмічного захисту споруди.

а) м'який трунт

в) скельний трунт

Рис. 8. Акселерограми для різних типів ґрунтів

Для визначення місць раціонального розташування демпферів застосовуємо МРЧ. Чисельна процедура зводиться до наступного [21; 22]. Початкові положення частинок $\mathbf{x}_n^{(0)}$ задаються випадковим чином, а на кожній ітерації їх нові координати визначаються за формулою:

$$\mathbf{x}_{n}^{(i+1)} = \mathbf{x}_{n}^{(i)} + \mathbf{v}_{n}^{(i)}, \qquad (11)$$

де $\mathbf{x}_{n}^{(i)}$, $\mathbf{v}_{n}^{(i)}$ – вектори координат та зміщень (швидкостей) частинок; *i* – номер ітерації, *i* = 0, 1, 2,...; *n* – номер частинки, *n* = 1, 2, 3,...*N*; *N* – кількість частинок. Компоненти вектору $\mathbf{x}_{n}^{(i)}$ – це параметри, від яких залежить цільова функція (номери поверхів, на яких встановлено демпфери). Розмірність векторів $\mathbf{x}_{n}^{(i)}$, $\mathbf{v}_{n}^{(i)}$ однакова та дорівнює розмірності задачі D. У випадку, що розглядається, відшукуються найкращі положення трьох демпферів, тому D = 3.

Швидкості частинок обчислюються так:

$$\mathbf{v}_{n}^{(i+1)} = c_{0}\mathbf{v}_{n}^{(i)} + c_{1}r_{1}\left(\mathbf{p}_{n}^{(i)} - \mathbf{x}_{n}^{(i)}\right) + c_{2}r_{2}\left(\mathbf{g}^{(i)} - \mathbf{x}_{n}^{(i)}\right),$$
(12)

де $\mathbf{p}_n^{(i)}$ – координати найкращого положення, знайденого частинкою; $\mathbf{g}^{(i)}$ – координати найкращого положення всього рою; r_1 , r_2 – випадкові величини, $0 \le r_1, r_2 \le 1$; c_0, c_1, c_2 – вагові коефіцієнти. Рекомендовані значення $0.4 \le c_0 \le 0.9$, $0.5 \le c_1, c_2 \le 2$ [9].

Перший доданок у формулі (12) визначає продовження руху частинки «за інерцією» у попередньому напрямку. Другий доданок скеровує частинку у сторону її особистого найкращого положення, а третій – у сторону найкращого положення, яке знайдено роєм. За умови правильно обраних значень вагових коефіцієнтів швидкість частинок поступово зменшується і частинки концентруються поблизу точки екстремуму.

Критерії завершення процесу пошуку можуть бути наступні:

- 1. виконання заданої кількості ітерацій;
- досягнення заданого значення екстремуму цільової функції;
- стагнація пошуку, коли знайдене значення екстремуму не покращується протягом декількох останніх ітерацій;
- зупинка руху частинок у точці екстремуму.

Умови обмежень, що накладаються на аргументи цільової функції, визначають область пошуку:

$$x_d^{\min} \le x_d \le x_d^{\max}, \tag{13}$$

де d = 1, 2, 3, ..., D. Якщо частинка потрапляє за межі області. заданої співвідношенням (13), її положення не враховується при оновленні значень $\mathbf{p}_{n}^{(i)}$ та **g**⁽ⁱ⁾. Тоді на наступних ітераціях частинка повертається до області пошуку. Такий моделі алгоритм відповідає «прозорої границі», яка забезпечує рівномірне дослідження усієї заданої області [23].

Розглянемо дві цільові функції, які необхідно мінімізувати:

- переміщення поверхів

$$\max\left[u_k\left(k_1, k_2, k_3\right)\right] \to \min; \qquad (14)$$

- відносні перекоси поверхів

$$\max\left(\frac{|u_k - u_{k-1}|}{h_k}\right) \to \min.$$
 (15)

Тут h_k – висота поверху; k_1 , k_2 , k_3 – номери поверхів, на яких можуть бути встановлено демпфери. Умови обмежень (13) запишуться у вигляді:

$$1 \le k_1, k_2, k_3 \le 6. \tag{16}$$

Чисельні розв'язки, що описують коливання будинку під дією сейсмічного навантаження, одержано шляхом інтегрування рівнянь руху (1) методом Рунге-Кутти (розділ 4) з урахуванням співвідношення (9) і початкових умов:

 $u_0(0) = 0; u_k(0) = \dot{u}_k(0) = \ddot{u}_k(0) = 0; \ 1 \le k \le 6.$

Крок інтегрування прийнято рівним $\Delta t = 0.001$ с, що дозволило визначити переміщення u_k із точністю у три значущих цифри. Інтервал інтегрування дорівнює розрахунковій тривалості землетрусу (табл. 1).

Для розв'язання задач оптимізації (14), (16) і (15), (16) використано популяцію із 16 частинок. Виконано розрахунки для випадку жорсткого грунту. Оптимальні розв'язки знайдено на 3 ітерації, а для повної зупинки руху частинок знадобилося (14), (16) 9 ітерацій. Розв'язок задачі (мінімізація переміщень поверхів) передбачає встановлення демпферів на поверхах 1, 3, 4; а розв'язок задачі (15), (16) (мінімізація перекосів) – на поверхах 1, 2, 3. В останньому випадку також досягнуто найменших прискорень поверхів, що робить такий варіант кращим.

Одержані результати для перекосів та прискорень поверхів будинку показані на рисунках 9–12. Червоні лінії відповідають конструкції без демпферів, а сині – знайденому раціональному розташуванню демпферів на поверхах 1, 2, 3. Аналіз результатів свідчить, що раціональне розташування демпферів дозволяє знизити відносні перекоси поверхів у 3,8 рази, тоді як максимальні прискорення зменшуються приблизно у 3 рази.

Рис. 9. Перекоси поверхів будинку під дією сейсмічного навантаження

Рис. 10. Перекіс 1-го поверху будинку під дією сейсмічного навантаження

Рис. 11. Прискорення поверхів під дією сейсмічного навантаження

Рис. 12. Прискорення 6-го поверху під дією сейсмічного навантаження

7. Висновки. У роботі розвинуто МРЧ місць раціонального визначення ДЛЯ розташування демпферів сухого тертя у каркасних будівлях для підвищення їх сейсмостійкості, зменшення переміщень і прискорень, що виникають внаслідок динамічних Визначено навантажень. розрахункові формули, за якими обчислюються положення частинок y просторі розв'язків на кожній ітерації процесу пошуку. Задано умови обмежень, які визначають область пошуку. Сформульовано критерії завершення процесу пошуку. Розроблено програмний код для реалізації методу рою частинок у середовищі комп'ютерної алгебри Махіта.

Розроблено наближену аналітичну динамічну модель багатоповерхового каркасного будинку із демпферами сухого тертя. Розрахункову схему прийнято у вигляді вертикального консольного стрижня із зосередженими масами, які розташовані рівні перекриттів на та можуть горизонтальному переміщуватись y напрямку. Складено вихідну систему нелінійних диференційних рівнянь руху. Для підтвердження достовірності моделі виконано порівняння аналітичних результатів для власних частот із чисельним розрахунком у ПК ЛІРА-САПР. Одержані

аналітичні та чисельні розв'язки добре погоджуються між собою. Аналіз перших шести форм власних коливань, визначених у ΠК ЛІРА-САПР, свідчить, шо переважаючими горизонтальні F переміщення поверхів за рахунок згинальних деформацій колон, тоді як деформаціями поздовжніми елементів каркасу можна знехтувати. Це підтверджує справедливість фізичних припущень, покладених В основу запропонованої аналітичної моделі. Для чисельного інтегрування вихідної системи диференційних рівнянь застосовано метод Рунге-Кутти.

Розроблено математичну модель сейсмічного навантаження. Прискорення грунту представлено у вигляді суперпозиції періодичних хвиль із дискретно заданими частотами і випадковими фазами. Розподіл спектральної густини енергії землетрусу описано за допомогою емпіричної моделі Канаі-Таїмі. Побудовано акселерограми для різних типів ґрунтів.

На основі запропонованих моделей, досліджено нестаціонарні коливання багатоповерхового каркасного будинку під дією сейсмічних навантажень. Одержано чисельні розв'язки нелінійних динамічних рівнянь та визначено раціональні місця розташування демпферів сухого тертя.

Результати роботи можуть використовуватися під час розроблення проектів будівель і споруд із підвищеною стійкістю до сейсмічних і динамічних навантажень, а також під час реконструкції існуючих будівель з метою підвищення їх сейсмічного захисту. Розвинутий МРЧ застосовувати можна для розв'язання оптимального широкого класу задач проектування будівельних конструкцій.

Робота виконана за підтримки наукового гранту ЄС за програмою Горизонт 2020, номер гранту 958284.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Soong T. T., Dargush G. F. Passive Energy Dissipation Systems in Structural Engineering. Chichester, New York: Wiley, 1997. 368 p.

2. Nabid N., Hajirasouliha I., Petkovski M. Adaptive low computational cost optimisation method for performance-based seismic design of friction dampers. *Engineering Structures*. 2019. Vol. 198. Pp. 109549-1–109549-12.

3. Ontiveros-Pérez S.P., Miguel L.F.F., Riera J.D. Reliability-based optimum design of passive friction dampers in buildings in seismic regions. *Engineering Structures*. 2019. Vol. 190. Pp. 276–284.

4. Ontiveros-Pérez S.P., Miguel Letícia F.F., Miguel Leandro F.F. A new assessment in the simultaneous optimization of friction dampers in plane and spatial civil structures. *Mathematical Problems in Engineering*. 2017. Article ID 6040986. 18 p.

5. Mordecai A. Nonlinear Programming: Analysis and Methods. Mineola, NY : Dover Publishing, 2003. 512 p.

6. Ruszczyński A. Nonlinear Optimization. Princeton, NJ : Princeton University Press, 2006. 464 p.

7. Simon D. Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence. Hoboken, New Jersey : Wiley, 2013. 784 p.

8. Yang X.S. Nature-Inspired Optimization Algorithms. Amsterdam, Boston : Elsevier, 2014. 300 p.

9. Карпенко А. П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. Москва : Издательство МГТУ им. Баумана, 2017. 446 с.

10. Kennedy J., Eberhart R. Particle Swarm Optimization. *Proceedings of IEEE International Conference on Neural Networks*. 1995. Vol. 4. Pp. 1942–1948.

11. Eberhart R., Shi Yu., Kennedy J. Swarm Intelligence. San Francisco : Morgan Kaufmann, 2001. 512 p.

12. Poli R. Analysis of the publications on the applications of particle swarm optimization. *Journal of Artificial Evolution and Applications*. 2008. Article ID 685175. 10 p.

13. Bonyadi M. R., Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. *Evolutionary Computation*. 2017. Vol. 25. Pp. 1–54.

14. ДБН В.1.1-12-2014. Будівництво у сейсмічних районах України. [Чинний від 16.05.2014]. Київ : Мінрегіон України, 2014. 110 с.

15. Samani H. R., Mirtaheri M., Zandi A. P., Bahai H. The Effects of Dynamic Loading on Hysteretic Behavior of Frictional Dampers. *Shock and Vibration*. 2014. Vol. 2014. Pp. 181534-1–181534-9.

16. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. Москва : Наука, 1974. 832 с.

17. Shinozuka M., Jan C.-M. Digital simulation of random processes and its applications. *Journal of Sound and Vibration*. 1972. Vol. 25. Pp. 111–128.

18. Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake. *Proceedings of the 2nd World Conference in Earthquake Engineering*, Tokyo, Japan. 1960. Pp. 781–797.

19. Kanai K. An empirical formula for the spectrum of strong earthquake motions. *Bulletin of the Earthquake Research Institute*. 1961. Vol. 39. Pp. 85–95.

20. Seya H., Talbott M. E., Hwang H.H.M. Probabilistic seismic analysis of a steel frame structure. *Probabilistic Engineering Mechanics*. 1993. Vol. 8. Pp. 127–136.

21. Данішевський В. В., Гайдар А. М. Метод рою частинок для розв'язання задач нелінійної оптимізації. Вісник Придніпровської державної академії будівництва та архітектури. 2019. № 6. С. 18–25.

22. Данішевський В. В., Гайдар А. М. Оптимізація розташування демпферів сухого тертя для сейсмічного захисту каркасних будівель за допомогою методу рою частинок. Вісник Одеської державної академії будівництва та архітектури. 2020. Т. 80. С. 34–42.

23. Xu S., Rahmat-Samii Y. Boundary conditions in particle swarm optimization revisited. *IEEE Transactions on Antennas and Propagation*. 2007. Vol. 55. Pp. 760–765.

REFERENSES

1. Soong T.T. and Dargush G.F. Passive Energy Dissipation Systems in Structural Engineering. Chichester, New York: Wiley, 1997, 368 p.

2. Nabid N., Hajirasouliha I. and Petkovski M. Adaptive low computational cost optimisation method for performance-based seismic design of friction dampers. Engineering Structures. 2019, vol. 198, pp. 109549-1–109549-12.

3. Ontiveros-Pérez S.P., Miguel L.F.F. and Riera J.D. Reliability-based optimum design of passive friction dampers in buildings in seismic regions. Engineering Structures. 2019, vol. 190, pp. 276–284.

4. Ontiveros-Pérez S.P., Miguel Letícia F.F. and Miguel Leandro F.F. A new assessment in the simultaneous optimization of friction dampers in plane and spatial civil structures. Mathematical Problems in Engineering. 2017. Article ID 6040986. 18 p.

5. Mordecai A. Nonlinear Programming: Analysis and Methods. Mineola, NY : Dover Publishing, 2003, 512 p.

6. Ruszczyński A. Nonlinear Optimization. Princeton, NJ: Princeton University Press, 2006, 464 p.

7. Simon D. Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence. Hoboken, New Jersey : Wiley, 2013, 784 p.

8. Yang X.S. Nature-Inspired Optimization Algorithms. Amsterdam, Boston : Elsevier, 2014, 300 p.

9. Karpenko A.P. *Sovremennyie algoritmyi poiskovoy optimizatsii. Algoritmyi, vdohnovlennyie prirodoy* [Modern search engine optimization algorithms. Algorithms inspired by nature]. Moscow : MGTU im. Baumana Publ., 2017, 446 p. (in Russian)

10. Kennedy J. and Eberhart R. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks. 1995, vol. 4, pp. 1942–1948.

11. Eberhart R., Shi Yu., Kennedy J. Swarm Intelligence. San Francisco : Morgan Kaufmann, 2001, 512 p.

12. Poli R. Analysis of the publications on the applications of particle swarm optimization. Journal of Artificial Evolution and Applications. 2008. Article ID 685175. 10 p.

13. Bonyadi M.R. and Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. Evolutionary Computation. 2017, vol. 25, pp. 1–54.

14. DBN V.1.1-12-2014. BudIvnitstvo u seysmIchnih rayonah UkraYini [Construction in seismic regions of Ukraine]. Ranked from 16.05.2014. Kyiv : Minrehion Ukrainy Publ., 2014, 110 p. (in Ukrainian)

15. Samani H.R., Mirtaheri M., Zandi A.P. and Bahai H. The Effects of Dynamic Loading on Hysteretic Behavior of Frictional Dampers. Shock and Vibration. 2014, vol. 2014, pp. 181534-1–181534-9.

16. Korn G. and Korn T. Spravochnik po matematike dlya nauchnyih rabotnikov i inzhenerov [Mathematics reference for scientists and engineers]. Moscow : Nauka Publ., 1974, 832 p. (in Russian)

17. Shinozuka M. and Jan C.-M. Digital simulation of random processes and its applications. Journal of Sound and Vibration. 1972, vol. 25, pp. 111–128.

18. Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake. Proceedings of the 2nd World Conference in Earthquake Engineering, Tokyo, Japan, 1960, pp. 781–797.

19. Kanai K. An empirical formula for the spectrum of strong earthquake motions. Bulletin of the Earthquake Research Institute. 1961, vol. 39, pp. 85–95.

20. Seya H., Talbott M.E. and Hwang H.H.M. Probabilistic seismic analysis of a steel frame structure. Probabilistic Engineering Mechanics. 1993, vol. 8, pp. 127–136.

21. Danishevskyy V.V. and Gaidar A.M. *Metod royu chastinok dlya rozv'yazannya zadach nelsiniynoyi optimizatsiyi* [Method of rotation of particles to solve the problems of nonlinear optimization]. *Visnik Pridniprovskoy i derzhavnoy i akademiyi budivnitstva ta arhitekturi* [Bulletin of Prydniprovska State Academy of Civil Engineering and Construction]. 2019, no. 6, pp. 18–25. (in Ukrainian)

22. Danishevskyy V.V. and Gaidar A.M. *Optimizatsiya roztashuvannya dempferiv suhogo tertya dlya seysmichnogo zahistu karkasnih budivel za dopomogoyu metodu royu chastinok* [Optimization of the location of dry friction dampers for seismic protection of frame buildings using the particles method]. *Visnik Odeskoyi derzhavnoyi akademiyi budivnitstva ta arhitekturi* [Bulletin of Odessa State Academy of Civil Engineering and Construction]. 2020, vol. 80, pp. 34–42. (in Ukrainian)

23. Xu S. and Rahmat-Samii Y. Boundary conditions in particle swarm optimization revisited. IEEE Transactions on Antennas and Propagation. 2007, vol. 55, pp. 760–765.

Надійшла до редакції: 15.02.2021.